Parallel Programming
with

Coarray Fortran

PRACE Autumn School, October 29t 2010

David Henty, Alan Simpson (EPCC)
Harvey Richardson, Bill Long, Nathan Wichmann (Cray)

cReaxr [ECC|

Tutorial Overview

® The Fortran Programming Model
® Basic coarray features

® Practical Session 1

® Further coarray features

® Practical Session 2

e Advanced coarray features

® Practical Session 3

® Experiences with coarrays

c=eas |E0CC

PERCOMPUTER

The Fortran
Programming Model

cReaxr [ECC|

Motivation

® Fortran now supports parallelism as a full first-class feature of
the language

® Changes are minimal
® Performance is maintained
® Flexibility in expressing communication patterns

— Y |epCC| 2

THE SUPERCOMPUTER COMPARY

Programming models for HPC

® The challenge is to efficiently map a problem to the
architecture we have

= Take advantage of all computational resources
= Manage distributed memories etc.
= Optimal use of any communication networks
® The HPC industry has long experience in parallel programming
= Vector, threading, data-parallel, message-passing etc.
® \We would like to have models or combinations that are
= efficient

= safe
= easy to learn and use

c=esr |©0CC

Why consider new programming models?

® Next-generation architectures bring new challenges:
= Very large numbers of processors with many cores
= Complex memory hierarchy
= even today (2010) we are at 200k cores
® Parallel programming is hard, need to make this simpler
® Some of the models we currently use are
= bolt-ons to existing languages as APls or directives
= Hard to program for underlying architecture
= unable to scale due to overheads
® So, is there an alternative to the models prevalent today?
= Most popular are OpenMP and MPI ...

e |SPCC

Shared-memory directives and OpenMP

memory

c=esr |©0CC

OpenMP: work distribution

memory

1$OMP PARALLEL
do 1=1,32
a(n)=a(1)*2

end do

> i
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

c=esr |©0CC

OpenMP implementation

memory

process
(I NN NSNS ENEEEENEEEEEE]

cpus

cRax (COCC 9

Shared Memory Directives

® Multiple threads share global memory
® Most common variant: OpenMP

® Program loop iterations distributed to threads,
more recent task features

= Each thread has a means to refer to private objects
within a parallel context

® Terminology
= Thread, thread team

®* Implementation
= Threads map to user threads running on one SMP node
= Extensions to distributed memory not so successful

® OpenMP is a good model to use within a node

c=esr |©0CC

10

Cooperating Processes Models

290909000
290909000
290909000
290909000
290909000
290909000

processes

PROBLEM

171

s FCOMPUTER COMPARY

cRex |CPCC

Message Passing, MPI

process

c=esr |©0CC

MPI

process 0 process 1

MPI_Send(a,--.-,1,.) MPI_Recv(a,...,0,.)

c=eas |E0CC

PERCOMPUTER

Message Passing

® Participating processes communicate using a message-passing
API

® Remote data can only be communicated (sent or received) via
the API

® MPI (the Message Passing Interface) is the standard

®* Implementation:
MPI processes map to processes within one SMP node or
across multiple networked nodes

® API provides process numbering, point-to-point and collective
messaging operations

® Mostly used in two-sided way, each endpoint coordinates in
sending and receiving

cmease [epCC] | :

SHMEM

process 0 process 1

shmem_put(a,b,..)

c=eas |E0CC

PERCOMPUTER

SHMEM

® Participating processes communicate using an API

® Fundamental operations are based on one-sided PUT and GET
® Need to use symmetric memory locations

® Remote side of communication does not participate

® Can test for completion

® Barriers and collectives

® Popular on Cray and SGI hardware, also Blue Gene version

® To make sense needs hardware support for low-latency
RDMA-type operations

cRe |CCC| 16

UPC

thread thread thread

c=eas |E0CC

PERCOMPUTER

UPC

thread thread thread

upc_forall (1=0; 1<32; 1++;dffinity)
a[i1]=al1]*2

end do

c=eas |E0CC

PERCOMPUTER

UPC

® Extension to ISO C99

® Participating “threads”

® New shared data structures
= shared pointers to distributed data (block or cyclic)
= pointers to shared data local to a thread
= Synchronization

® Language constructs to divide up work on shared data
= upc_forall() to distribute iterations of for() loop

® Extensions for collectives

® Both commercial and open source compilers available
= Cray, HP, IBM
= Berkeley UPC (from LBL), GCC UPC

c2a [CPCC | 19

Fortran 2008 coarray model

e Example of a Partitioned Global Address Space (PGAS)
model

® Set of participating processes like MPI

® Participating processes have access to local memory
via standard program mechanisms

® Access to remote memory is directly supported by
the language

e |COCC 20

Fortran coarray model

Process process process

c=esr |©0CC

Fortran coarrays

® Remote access is a full feature of the language:
= Type checking
= Opportunity to optimize communication

® No penalty for local memory access

® Single-sided programming model more natural for
some algorithms

= and a good match for modern networks with RDMA

c=esr |©0CC

22

Fortran coarrays

Basic Features

cReaxr [ECC|

Coarray Fortran
"Coarrays were designed to answer the question:

‘What is the smallest change required to convert Fortran
into a robust and efficient parallel language?’

The answer: a simple syntactic extension.

It looks and feels like Fortran and requires
Fortran programmers to learn only a few new rules."

John Reid,
ISO Fortran Convener

THE SUPERCOMPUTER COMPARY

Lt — PPy |epCC|

Some History

® Introduced in current form by Numrich and Reid in 1998 as a
simple extension to Fortran 95 for parallel processing

® Many years of experience, mainly on Cray hardware

® A set of core features are expected to form part of the Fortran
2008 standard

e Additional features are expected to be published in a Technical
Report in due course.

cRay |COCC 25

How Does It Work?

® SPMD - Single Program, Multiple Data
® single program replicated a fixed number of times

® Each replication is called an image

® Images are executed asynchronously

= execution path may differ from image to image
= some situations cause images to synchronize

® Images access remote data using coarrays

® Normal rules of Fortran apply

cRe |CCC| _f 26

What are coarrays?

® Arrays or scalars that can be accessed remotely

= images can access data objects on any other image
e Additional Fortran syntax for coarrays

= Specifying a codimension declares a coarray

real, dimension(10), codimension[*]:: X
real :-: x(10)[*]

= these are equivalent declarations of a array x
of size 10 on each image

= X is now remotely accessible
= coarrays have the same size on each image!

Ry |COCC _, 27

PERCOMPUTER

Accessing coarrays

integer -: a(4)[*], b(4)[*] !declare coarrays
b(:) = a(:)Inl I copy

® integer arrays a and b declared to be size 4 on all images
® copy array a from remote image n into local array b

o () for local access [] for remote access

® e.g. for two images and n = 2:

image 1 image 2 _-
4 N) i$580s
al1]2]|3]|4] al2|9]3[7]
b| 86|23 |8 | b | 1| 32| 73] |
g J Y,
R |COCC 28

Synchronisation

® Be careful when updating coarrays:
= |f we get remote data was it valid?

= Could another process send us data and overwrite
something we have not yet used?

= How do we know that data sent to us has arrived?
® Fortran provides intrinsic synchronisation statements
® For example, barrier for synchronisation of all images:

sync all

® do not make assumptions about execution timing on images &

= unless executed after synchronisation
= Note there is implicit synchronisation at program start,

cRe |CCC| _f 29

Retrieving information about images

® Two intrinsics provide index of this image and number of
images

= this _1mage() (imageindexes startat1)
= num_images()

real :: Xx[*]

1f(this _1mage() == 1) then
read *,X
do Image =

X[1mage]

end do

end 1f

sync all

c=asr |COCC | 30

2, um_images()

Making remote references

® We used a loop over images

do 1mage = 2,num_images()
xX[image] = X
end do

® Note that array indexing within the coindex is not allowed
SO we can not write

#[Z:num_images()] = X ' 1llegal

c=esr |©0CC

Sl

Data usage

® coarrays have the same size on every image

® Declarations:
= round brackets () describe rank, shape and extent of local
data
= square brackets [] describe layout of images that hold local
data
® Many HPC problems have physical quantities mapped to n-
dimensional grids
® You need to implement your view of global data from the local J&
coarrays as Fortran does not provide the global view
= You can be flexible with the coindexing (see later)

= You can use any access pattern you wish

cRay |COCC 32

Data usage

® print out a 16 element “global” integer array A from 4
pProcessors

= 4 elements per processor =4 coarrays on 4 images

integer :: ca(4)[*]

do mmage=1,num_images()
print *,calimage]

end do

ca(1:4)[1] ca(1:4)[2] ca(1:4)[3] ca(1:4)[4]
A HEREERENE

image 1 image 2 image 3 image 4

Lt — PPy |epCC|

THE SUPERCOMPUTER COMPARY

33

1D cyclic data access

® coarray declarations remain unchanged
= but we use a cyclic access pattern

integer :: ca(4)[*]
do 1=1,4
do mmage=1,num_images()
print *,ca(i)[i1mage]
end do
end do

image 1 image 2 image 3

e |SPCC ' 3

THE SUPERCOMPUTER COMPARY

Synchronisation

® code execution on images is independent

= programmer has to control execution using
synchronisation

® synchronise before accessing coarrays

= ensure content is not updated from remote images before
you can use it

® synchronise after accessing coarrays
= ensure new content is available to all images

® implicit synchronisation after variable declarations at first __
executable statement FCHE

= guarantees coarrays exist on all images when your first
program statement is executed

e \We will revisit this topic later

Lt — PPy |epCC|

THE SUPERCOMPUTER COMPARY

83

Example: maximum of array

real :: a(l10)
real__:_i__rngz(_i_my_m[:l _______________ > {implicitsynchronisation }
call random _number(a)
maximum = maxval(a)
sync all -=-=========77777777"
1T (this_i1mage() == 1) then
do 1mage = 2, num_images()
maximum = max(maximum, maximum[image])
end do
do 1mage = 2, num_images()
maximum[image] = maximum
end do

> { ensure all images set local maximum

end 1f > {ensure all images have copy of maximum value]

sync all -----""""

e |SPCC 3

THE SUPERCOMPUTER COMPARY

Recap

We now know the basics of coarrays

e declarations

e references with []

e this 1mage() and num_1mages()
e sync all

Now consider a full program example...

cRe |CCC| _f 37

Example2: Calculate density of primes

program pdensity
amplicit none

integer, parameter :: n=8000000, nimages=8
integer start,end,1i
integer, dimension(nimages) :: nprimes[*]

real density

start = (this _image()-1) * n/num_images() + 1
end = start + n/num_images() - 1

nprimes(this_i1mage())[1] = num_primes(start,end)

sync all

c=asr |COCC 38

Example2: Calculate density of primes

IF (this _1mage()==1) then

nprimes(l)=sum(nprimes)

density=real (nprimes(l1))/n

print *,"Calculating prime density on', &

& num_images(), " images"

print *,nprimes(l), "primes in",n, "numbers”
write(™, " (" density i1s ",2P,f5.2,"%"") ")density
write(™*, " (" asymptotic theory gives ", &

& 2P, f5.2,"%")")1.0/(log(real(n))-1.0)

end 1f

c=asr |COCC 39

Example2: Calculate density of primes

Calculating prime density on 2 images
539778 primes 1n 8000000 numbers
density 1s 6.75%

asymptotic theory gives 6.71%

cRes |SOCC | o

PERCOMPUTER

Observations so far on coarrays

® Natural extension, easy to learn
® Makes parallel parts of program obvious (syntax)
® Part of Fortran language (type checking, etc)

® No mapping of data to buffers (or copying) or creation of
complex types (as we might have with MPI)

® Compiler can optimize for communication

® More observations later...

e |SPCC

41

Exercise Session 1

® | ook at the Exercise Notes document for full details

® Write, compile and run a “Hello World” program that prints
out the value of the running image’s image index and the
number of images

® Extend the simple Fortran code provided in order to perform
operations on parts of a picture using coarrays

cRaesr [€PCC 42

Backup Slides

HPF model

cReaxr [ECC|

High Performance Fortran (HPF)

® Data Parallel programming model

® Single thread of control

® Arrays can be distributed and operated on in parallel
® [Loosely synchronous

® Parallelism mainly from Fortran 90 array syntax, FORALL and
intrinsics.

® This model popular on SIMD hardware (AMT DAP, Connection
Machines) but extended to clusters where control thread is
replicated

P A |epCC| Y, 44

HPF

ST

c=esr |©0CC

HPF

[sssssssssssnsnan}
A (disributed)

A=SQRT(A)

c=eas |E0CC

PERCOMPUTER

	Parallel Programming�with �Coarray Fortran
	Tutorial Overview
	The Fortran �Programming Model
	Motivation
	Programming models for HPC
	Why consider new programming models?
	Shared-memory directives and OpenMP
	OpenMP: work distribution
	OpenMP implementation
	Shared Memory Directives
	Cooperating Processes Models
	Message Passing, MPI
	MPI
	Message Passing
	SHMEM
	SHMEM
	UPC
	UPC
	UPC
	Fortran 2008 coarray model
	Fortran coarray model
	Fortran coarrays
	Fortran coarrays
	Coarray Fortran
	Some History
	How Does It Work?
	What are coarrays?
	Accessing coarrays
	Synchronisation
	Retrieving information about images
	Making remote references
	Data usage
	Data usage
	1D cyclic data access
	Synchronisation
	Example: maximum of array
	Recap
	Example2: Calculate density of primes
	Example2: Calculate density of primes
	Example2: Calculate density of primes
	Observations so far on coarrays
	Exercise Session 1
	Backup Slides
	High Performance Fortran (HPF)
	HPF
	HPF

