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Tutorial Overview

® The Fortran Programming Model
® Basic coarray features

® Practical Session 1

® Further coarray features

® Practical Session 2

e Advanced coarray features

® Practical Session 3

® Experiences with coarrays
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The Fortran
Programming Model
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Motivation

® Fortran now supports parallelism as a full first-class feature of
the language

® Changes are minimal
® Performance is maintained
® Flexibility in expressing communication patterns
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Programming models for HPC

® The challenge is to efficiently map a problem to the
architecture we have

= Take advantage of all computational resources
= Manage distributed memories etc.
= Optimal use of any communication networks
® The HPC industry has long experience in parallel programming
= Vector, threading, data-parallel, message-passing etc.
® \We would like to have models or combinations that are
= efficient

= safe
= easy to learn and use
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Why consider new programming models?

® Next-generation architectures bring new challenges:
= Very large numbers of processors with many cores
= Complex memory hierarchy
= even today (2010) we are at 200k cores
® Parallel programming is hard, need to make this simpler
® Some of the models we currently use are
= bolt-ons to existing languages as APls or directives
= Hard to program for underlying architecture
= unable to scale due to overheads
® So, is there an alternative to the models prevalent today?
= Most popular are OpenMP and MPI ...
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Shared-memory directives and OpenMP

memory

c=esr |©0CC



OpenMP: work distribution

memory

1$OMP PARALLEL
do 1=1,32
a(n)=a(1)*2

end do

> i
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OpenMP implementation

memory

process
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cpus
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Shared Memory Directives

® Multiple threads share global memory
® Most common variant: OpenMP

® Program loop iterations distributed to threads,
more recent task features

= Each thread has a means to refer to private objects
within a parallel context

® Terminology
= Thread, thread team

®* Implementation
= Threads map to user threads running on one SMP node
= Extensions to distributed memory not so successful

® OpenMP is a good model to use within a node
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Cooperating Processes Models

290909000
290909000
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290909000
290909000
290909000

processes

PROBLEM
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Message Passing, MPI

process
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MPI

process 0 process 1

MPI_Send(a,--.-,1,.) MPI_Recv(a,...,0,.)
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Message Passing

® Participating processes communicate using a message-passing
API

® Remote data can only be communicated (sent or received) via
the API

® MPI (the Message Passing Interface) is the standard

®* Implementation:
MPI processes map to processes within one SMP node or
across multiple networked nodes

® API provides process numbering, point-to-point and collective
messaging operations

® Mostly used in two-sided way, each endpoint coordinates in
sending and receiving
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SHMEM

process 0 process 1

shmem_put(a,b,..)
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SHMEM

® Participating processes communicate using an API

® Fundamental operations are based on one-sided PUT and GET
® Need to use symmetric memory locations

® Remote side of communication does not participate

® Can test for completion

® Barriers and collectives

® Popular on Cray and SGI hardware, also Blue Gene version

® To make sense needs hardware support for low-latency
RDMA-type operations
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UPC

thread thread thread
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UPC

thread thread thread

upc_forall (1=0; 1<32; 1++;dffinity)
a[i1]=al1]*2

end do
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UPC

® Extension to ISO C99

® Participating “threads”

® New shared data structures
= shared pointers to distributed data (block or cyclic)
= pointers to shared data local to a thread
= Synchronization

® Language constructs to divide up work on shared data
= upc_forall() to distribute iterations of for() loop

® Extensions for collectives

® Both commercial and open source compilers available
= Cray, HP, IBM
= Berkeley UPC (from LBL), GCC UPC
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Fortran 2008 coarray model

e Example of a Partitioned Global Address Space (PGAS)
model

® Set of participating processes like MPI

® Participating processes have access to local memory
via standard program mechanisms

® Access to remote memory is directly supported by
the language
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Fortran coarray model

Process process process
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Fortran coarrays

® Remote access is a full feature of the language:
= Type checking
= Opportunity to optimize communication

® No penalty for local memory access

® Single-sided programming model more natural for
some algorithms

= and a good match for modern networks with RDMA
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Fortran coarrays

Basic Features
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Coarray Fortran
"Coarrays were designed to answer the question:

‘What is the smallest change required to convert Fortran
into a robust and efficient parallel language?’

The answer: a simple syntactic extension.

It looks and feels like Fortran and requires
Fortran programmers to learn only a few new rules."

John Reid,
ISO Fortran Convener
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Some History

® Introduced in current form by Numrich and Reid in 1998 as a
simple extension to Fortran 95 for parallel processing

® Many years of experience, mainly on Cray hardware

® A set of core features are expected to form part of the Fortran
2008 standard

e Additional features are expected to be published in a Technical
Report in due course.
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How Does It Work?

® SPMD - Single Program, Multiple Data
® single program replicated a fixed number of times

® Each replication is called an image

® Images are executed asynchronously

= execution path may differ from image to image
= some situations cause images to synchronize

® Images access remote data using coarrays

® Normal rules of Fortran apply
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What are coarrays?

® Arrays or scalars that can be accessed remotely

= images can access data objects on any other image
e Additional Fortran syntax for coarrays

= Specifying a codimension declares a coarray

real, dimension(10), codimension[*]:: X
real :-: x(10)[*]

= these are equivalent declarations of a array x
of size 10 on each image

= X is now remotely accessible
= coarrays have the same size on each image!
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Accessing coarrays

integer -: a(4)[*], b(4)[*] !declare coarrays
b(:) = a(:)Inl I copy

® integer arrays a and b declared to be size 4 on all images
® copy array a from remote image n into local array b

o () for local access [] for remote access

® e.g. for two images and n = 2:

image 1 image 2 _-
4 N ) i$580s
al1]2]|3]|4] al2|9]3[7]
b| 86|23 |8 | b | 1| 32| 73] |
g J Y,
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Synchronisation

® Be careful when updating coarrays:
= |f we get remote data was it valid?

= Could another process send us data and overwrite
something we have not yet used?

= How do we know that data sent to us has arrived?
® Fortran provides intrinsic synchronisation statements
® For example, barrier for synchronisation of all images:

sync all

® do not make assumptions about execution timing on images &

= unless executed after synchronisation
= Note there is implicit synchronisation at program start,
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Retrieving information about images

® Two intrinsics provide index of this image and number of
images

= this _1mage() (imageindexes startat1)
= num_images()

real :: Xx[*]

1f(this _1mage() == 1) then
read *,X
do Image =

X[ 1mage]

end do

end 1f

sync all
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Making remote references

® We used a loop over images

do 1mage = 2,num_images()
xX[image] = X
end do

® Note that array indexing within the coindex is not allowed
SO we can not write

#[Z:num_images()] = X ' 1llegal
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Data usage

® coarrays have the same size on every image

® Declarations:
= round brackets () describe rank, shape and extent of local
data
= square brackets [] describe layout of images that hold local
data
® Many HPC problems have physical quantities mapped to n-
dimensional grids
® You need to implement your view of global data from the local J&
coarrays as Fortran does not provide the global view
= You can be flexible with the coindexing (see later)

= You can use any access pattern you wish
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Data usage

® print out a 16 element “global” integer array A from 4
pProcessors

= 4 elements per processor =4 coarrays on 4 images

integer :: ca(4)[*]

do mmage=1,num_images()
print *,calimage]

end do

ca(1:4)[1] ca(1:4)[2] ca(1:4)[3] ca(1:4)[4]
A HEREERENE

image 1 image 2 image 3 image 4
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1D cyclic data access

® coarray declarations remain unchanged
= but we use a cyclic access pattern

integer :: ca(4)[*]
do 1=1,4
do mmage=1,num_images()
print *,ca(i)[i1mage]
end do
end do

image 1 image 2 image 3
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Synchronisation

® code execution on images is independent

= programmer has to control execution using
synchronisation

® synchronise before accessing coarrays

= ensure content is not updated from remote images before
you can use it

® synchronise after accessing coarrays
= ensure new content is available to all images

® implicit synchronisation after variable declarations at first __
executable statement FCHE

= guarantees coarrays exist on all images when your first
program statement is executed

e \We will revisit this topic later

Lt — PPy |epCC|

THE SUPERCOMPUTER COMPARY

83



Example: maximum of array

real :: a(l10)
real__:_i__rngz(_i_my_m[:l _______________ > {implicitsynchronisation }
call random _number(a)
maximum = maxval(a)
sync all  -=-=========77777777"
1T (this_i1mage() == 1) then
do 1mage = 2, num_images()
maximum = max(maximum, maximum[image])
end do
do 1mage = 2, num_images()
maximum[image] = maximum
end do

> { ensure all images set local maximum

end 1f > {ensure all images have copy of maximum value ]

sync all -----""""
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Recap

We now know the basics of coarrays

e declarations

e references with []

e this 1mage() and num_1mages()
e sync all

Now consider a full program example...
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Example2: Calculate density of primes

program pdensity
amplicit none

integer, parameter :: n=8000000, nimages=8
integer start,end,1i
integer, dimension(nimages) :: nprimes[*]

real density

start = (this _image()-1) * n/num_images() + 1
end = start + n/num_images() - 1

nprimes(this_i1mage())[1] = num_primes(start,end)

sync all
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Example2: Calculate density of primes

IF (this _1mage()==1) then

nprimes(l)=sum(nprimes)

density=real (nprimes(l1))/n

print *,"Calculating prime density on', &

& num_images(), " images"

print *,nprimes(l), "primes in",n, "numbers”
write(™, " (" density i1s ",2P,f5.2,"%"") ")density
write(™*, " (" asymptotic theory gives ", &

& 2P, f5.2,"%")")1.0/(log(real(n))-1.0)

end 1f
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Example2: Calculate density of primes

Calculating prime density on 2 images
539778 primes 1n 8000000 numbers
density 1s 6.75%

asymptotic theory gives 6.71%
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Observations so far on coarrays

® Natural extension, easy to learn
® Makes parallel parts of program obvious (syntax)
® Part of Fortran language (type checking, etc)

® No mapping of data to buffers (or copying) or creation of
complex types (as we might have with MPI)

® Compiler can optimize for communication

® More observations later...

e |SPCC
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Exercise Session 1

® | ook at the Exercise Notes document for full details

® Write, compile and run a “Hello World” program that prints
out the value of the running image’s image index and the
number of images

® Extend the simple Fortran code provided in order to perform
operations on parts of a picture using coarrays
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HPF model
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High Performance Fortran (HPF)

® Data Parallel programming model

® Single thread of control

® Arrays can be distributed and operated on in parallel
® [Loosely synchronous

® Parallelism mainly from Fortran 90 array syntax, FORALL and
intrinsics.

® This model popular on SIMD hardware (AMT DAP, Connection
Machines) but extended to clusters where control thread is
replicated
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HPF

ST
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HPF

[sssssssssssnsnan}
A (disributed)

A=SQRT(A)
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