Advanced Features

PRACE Autumn School, October 29" 2010
Parallel Programming with Coarray Fortran

cReaxr [ECC|

Advanced Features: Overview

® Execution segments and Synchronisation
® Non-global Synchronisation

® Critical Sections

e Visibility of changes to memory

® Other Intrinsics

® Miscellaneous features

® Future developments

e |COCC)

More on Synchronisation

® \We have to be careful with one-sided updates
= |f we read remote data, was it valid?

= Could another process send us data and overwrite
something we have not yet used?

= How do we know when remote data has arrived?

® The standard introduces execution segments to deal with this:
segments are bounded by image control statements

e |f avariable is defined in a segment, it must not be referenced,
defined, or become undefined in another segment unless the £
segments are ordered :

cReasr |S0CC | 3

Execution Segments

1

program hot

double precision :: a(n)
double precision ::
Q1

do i=1, num_images(Q)
read *,a
temp(:)[i] = a

| end do

end if

segment

temp = temp + 273d0O

? sync all
1

call emsemble(temp)

temp(n) [*]

i%-ithis_image() == 1) then

1

segment

—

ordering

program hot

double precision :: a(n)

double precision :: temp(n)[*]

1.

it (this_image() == 1) then
do i=1, num_images()

read *,a
temp(:)[i] = a
end do
end if

temp = temp + 273d0O
sync all

11 ensemble(temp)

image synchronisation points

Lt — PPy |epCC|

THE SUPERCOMPUTER COMPARY

Synchronisation mistakes

® This code is wrong

subroutine allreduce_max_getput(v,vmax)
double precision, intent(in) :: v[*]
double precision, intent(out) :: vmax[*]
integer i
sync all

vmax=v
if (this_image()==1) then
do i=2,num_images()
vmax=max(vmax,v[i])
end do
do i=2,num_images()
vmax[i]=vmax
end do
end if
sync all

THE SUPERCOMPUTER COMPARY

cRaxr (COCC

Synchronisation mistakes

® |t breaks the rules

subroutine allreduce_max_getput(v,vmax)
double precision, intent(in) :: v[*]
double precision, intent(out) :: vmax[*]
integer i
sync all

vmax=v
if (this_image()==1) then
do i=2,num_images()
vmax=max(vmax,v[i])
end do
do i=2,num_images()
vmax[i]=vmax
end do
end if
sync all

THE SUPERCOMPUTER COMPARY

cRaxr (COCC

Synchronisation mistakes

® This is ok

subroutine allreduce_max_getput(v,vmax)
double precision, intent(in) :: v[*]
double precision, intent(out) :: vmax[*]
integer i

sync all

if (this_image()==1) then
vmax=v
do i=2,num_images()
vmax=max(vmax,v[i])
end do
do i=2,num_images()
vmax[i]=vmax
end do
end if
sync all

cRaxr (COCC

THE SUPERCOMPUTER COMPARY

More about sync all

e Usually all images execute the same sync all statement

® But this is not a requirement..
= |mages execute different code with different sync all
statements
= All images execute the first sync all they come across

and....
® this may match an arbitray sync all on another image

® causing incorrect execution and/or deadlock

® Need to be careful with this ‘feature’
= Possible to write code which doesn’t deadlock but gives
Wrong answers

Lt — PPy |epCC| p 3

THE SUPERCOMPUTER COMPARY

More about sync all

® e.g. Image practical: wrong answer

I Do halo swap, taking care at the upper and lower picture boundaries

1T (myimage < numimage) then
oldpic(l:nxlocal, nylocal+1l) = oldpic(l:nxlocal, 1)[myimage+1]

—Sﬁ@—&l—'— ———————— » | All images NOT executing this sync all
end 1f
1 ___. and the same for down halo

I Now update the local values of newpic

I Need to synchronise to ensure that all images have finished reading the
I oldpic halo values on this image before overwriting 1t with newpic

sync all = = = = ———— All images ARE executing this sync all

oldpic(l:nxlocal,1l:nylocal) = newpic(l:nxlocal,l:nylocal)

I Need to synchronise to ensure that all images have finished updating
I their oldpic arrays before this image reads any halo data from them

sync all

£

THE SUPERCOMPUTER COMPARY

Lt — PPy |epCC|

More about sync all
e sync Images(imageList)

= Performs a synchronisation of the image executing sync
Images with each of the images specified in ImageList

= ImageList can bean array or ascalar

I Do halo swap, taking care at the upper and lower picture boundaries
1T (myimage < numimage) then

oldpic(l:nxlocal, nylocal+1) = oldpic(l:nxlocal, 1)[myimage+1]
sync images(myimage+1)

end 1f

ifT (myimage > 1) then

oldpic(l:nxlocal, 0) = oldpic(l:nxlocal, nylocal)[myimage-1]
sync 1mages(myimage-1)

end i1f

(i — Pl |epCC| { i

THE SUPERCOMPUTER COMPARY

Other Synchronisation

® Critical sections

= Limit execution of a piece of code to one image at a time

= e.g. calculating global sum on master image

integer :: a(100)[*]
integer :: globalSum[*] = 0, localSum

I Initialise a on each image

localSum = SUM(a) !'Find localSum of a on each image

critical f
globalSum[1] = globalSum[1] + localSum '
end critical

Lt — PPy |epCC| %

THE SUPERCOMPUTER COMPARY

Other Synchronisation

* SYyNC memory

= Coarray data held in caches/registers made visible to all images
= requires some other synchronisation to be useful

= unlikely to be used in most coarray codes

e sync memory implied for sync all and sync 1mages

0o

c=esr |©0CC

Other Synchronisation

e lock and unlock statements

= Control access to data defined or referenced by more than one
Image

= as opposed to critical which controls access to lines of
code

= USE 1so0_fortran_env module and define coarray of
type(lock_type) type(lock_type) :: glLock[*]

= e.g.tolock data on image 2

lock(gLock[2])
laccess data on image 2
unlock(gLock[2])

cRas |SOCC V. 13

¥

Other Intrinsic functions

e Icobound(z)

= Returns lower cobounds of the coarray z

= Ilcobound(z,dim) returns lower cobounds for
codimension dim of z

e ucobound(z)
= Returns upper cobound of the coarray z

= Ilcobound(z,dim) returns upper cobound for
codimension dimof z

e real :: array(10)[4,0:*] on 16images
= Ilcobound(array) returns|[1, 0]
= ucobound(array) returns|[4, 3]

c=esr |©0CC

14

More on Cosubscripts

e Integer :: a[*] on8images
= cosubscript aJ9] is not valid

e real :: b(10)[3,*] on8images
= ucobounds(b) returns[3, 3]
= cosubscript b[2,3] isvalid (corresponds to image 8)...

= _..but cosubscript b[3,3] isinvalid (image 9)

= Programmer needs to make sure that cosubscripts are valid

= this_1mage returns O for invalid cosubscripts

c=earyr SOCC 1

Assumed Size Coarrays

* Codimensions can be remapped to corank greater than 1
= useful for determining optimal extents at runtime

program 2d
real, codimension[*] :: picture(100,100)
integer :: numimage, numimagex, numimagey

numimage = num_images()

call get best 2d decomposition(numimage,&
numimagex, numimagey)

I Assume this ensures numimage=numimagex*numimagey

call dothework(picture, numimagex, numimagey)

contains

subroutine dothework(array, m, n)
real, codimension[m,*] :: array(100,100)

end subroutine dothework

cRas |SOCC 16

PERCOMPUTER

/0

® Each image has its own set of input/output units

® units are independent on each image

® Default input unit is preconnected on image 1 only
= read *,.. ,read(*,.)..

e Default output unit is available on all images
= print *,. ,write(*,..)..

® |t is expected that the implementation will merge
records from each image into one stream

SReaty |CPCC 17

Program Termination

® STOP or END PROGRAM statements initiate normal
termination which includes a synchronisation step

® An image’s data is still available after it has initiated
normal termination

® Other images can test for this using STAT= specifier to
synchronisation calls or allocate/deallocate

= test for STAT _STOPPED IMAGE (defined in
ISO_FORTRAN_ENV module)

® The ERROR STOP statement initiates error
termination and it is expected all images will be
terminated.

cRe |CCC| _f 18

Coarray TR

® New coarray features may be described in a Technical Report
(TR)

® Work in progress but the areas of discussion are:
= image teams
= collective intrinsics for coarrays
= file operations by more than one image
= new atomics
= coarray pointers and non-symmetric allocation
= coscalars

Smesr [€PCC| 19

THE SUPERCOMPUTER COMPARY

TR: TEAMSs of Images

® To define a set of images as a TEAM

call form team(team,[(i,i=1,n,2) 1)

® To synchronise the team

sync team(team)

® To determine images that constitute a team

images=team_images(team)

c=esr |©0CC

TR: Collective intrinsic subroutines

® Collectives, with in/out arguments, invoked by same
statement on all images (or team of images)

® Routines
= CO _SUM and other reduction operations
= CO_MINVAL, CO_MAXVAL
= Possibly more general reduction

e Arguments include SOURCE, RESULT, TEAM

e Still discussion on need for implicit synchronisation and
argument types (for example non-coarray arguments)

c=esr |©0CC

2L

T L R R LY

hxuunnxuxﬁnxwugl1ﬂ;ﬁ1 0
,nuﬁlﬁﬁﬂﬁﬂﬁ11ﬁ1111u1

§1011101000010000q 0
ﬁniiﬂ1111ﬁﬁiﬁﬂﬂﬁgul

1.0
gL
O,
L
L
g
o

-'aﬂd
DS
ﬂﬂ-—l

.'ﬂ-ll'—u-

=
v -t
(=]

Lot — PPy |epCC|

THE SUPERCOMPUTER COMPARY

	Advanced Features�
	Advanced Features: Overview
	More on Synchronisation
	Execution Segments
	Synchronisation mistakes
	Synchronisation mistakes
	Synchronisation mistakes
	More about sync all
	More about sync all
	More about sync all
	Other Synchronisation
	Other Synchronisation
	Other Synchronisation
	Other Intrinsic functions
	More on Cosubscripts
	Assumed Size Coarrays
	I/O
	Program Termination
	Coarray TR
	TR: TEAMs of Images
	TR: Collective intrinsic subroutines

