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Advanced Features: Overview

® Execution segments and Synchronisation
® Non-global Synchronisation

® Critical Sections

e Visibility of changes to memory

® Other Intrinsics

® Miscellaneous features

® Future developments
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More on Synchronisation

® \We have to be careful with one-sided updates
= |f we read remote data, was it valid?

= Could another process send us data and overwrite
something we have not yet used?

= How do we know when remote data has arrived?

® The standard introduces execution segments to deal with this:
segments are bounded by image control statements

e |f avariable is defined in a segment, it must not be referenced,
defined, or become undefined in another segment unless the £
segments are ordered :
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Execution Segments

1

program hot

double precision :: a(n)
double precision ::
Q1

do i=1, num_images(Q)
read *,a
temp(:)[i] = a

| end do

end if

segment

temp = temp + 273d0O

? sync all
1

call emsemble(temp)

temp(n) [*]

i%-ithis_image() == 1) then

1

segment

—

ordering

program hot

double precision :: a(n)

double precision :: temp(n)[*]

1.

it (this_image() == 1) then
do i=1, num_images()

read *,a
temp(:)[i] = a
end do
end if

temp = temp + 273d0O
sync all

11 ensemble(temp)

image synchronisation points
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Synchronisation mistakes

® This code is wrong

subroutine allreduce_max_getput(v,vmax)
double precision, intent(in) :: v[*]
double precision, intent(out) :: vmax[*]
integer i
sync all

vmax=v
if (this_image()==1) then
do i=2,num_images()
vmax=max(vmax,v[i])
end do
do i=2,num_images()
vmax[ i]=vmax
end do
end if
sync all
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Synchronisation mistakes

® |t breaks the rules

subroutine allreduce_max_getput(v,vmax)
double precision, intent(in) :: v[*]
double precision, intent(out) :: vmax[*]
integer i
sync all

vmax=v
if (this_image()==1) then
do i=2,num_images()
vmax=max(vmax,v[i])
end do
do i=2,num_images()
vmax[ i]=vmax
end do
end if
sync all
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Synchronisation mistakes

® This is ok

subroutine allreduce_max_getput(v,vmax)
double precision, intent(in) :: v[*]
double precision, intent(out) :: vmax[*]
integer i

sync all

if (this_image()==1) then
vmax=v
do i=2,num_images()
vmax=max(vmax,v[i])
end do
do i=2,num_images()
vmax[i]=vmax
end do
end if
sync all
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More about sync all

e Usually all images execute the same sync all statement

® But this is not a requirement..
= |mages execute different code with different sync all
statements
= All images execute the first sync all they come across

and....
® this may match an arbitray sync all on another image

® causing incorrect execution and/or deadlock

® Need to be careful with this ‘feature’
= Possible to write code which doesn’t deadlock but gives
Wrong answers
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More about sync all

® e.g. Image practical: wrong answer

I Do halo swap, taking care at the upper and lower picture boundaries

1T (myimage < numimage) then
oldpic(l:nxlocal, nylocal+1l) = oldpic(l:nxlocal, 1)[myimage+1]

—Sﬁ@—&l—'— ———————— » | All images NOT executing this sync all
end 1f
1 ___. and the same for down halo

I Now update the local values of newpic

I Need to synchronise to ensure that all images have finished reading the
I oldpic halo values on this image before overwriting 1t with newpic

sync all = = = = ———— All images ARE executing this sync all

oldpic(l:nxlocal,1l:nylocal) = newpic(l:nxlocal,l:nylocal)

I Need to synchronise to ensure that all images have finished updating
I their oldpic arrays before this image reads any halo data from them

sync all

£
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More about sync all
e sync Images(imageList)

= Performs a synchronisation of the image executing sync
Images with each of the images specified in ImageList

= ImageList can bean array or ascalar

I Do halo swap, taking care at the upper and lower picture boundaries
1T (myimage < numimage) then

oldpic(l:nxlocal, nylocal+1) = oldpic(l:nxlocal, 1)[myimage+1]
sync images(myimage+1)

end 1f

ifT (myimage > 1) then

oldpic(l:nxlocal, 0) = oldpic(l:nxlocal, nylocal)[myimage-1]
sync 1mages(myimage-1)

end i1f
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Other Synchronisation

® Critical sections

= Limit execution of a piece of code to one image at a time

= e.g. calculating global sum on master image

integer :: a(100)[*]
integer :: globalSum[*] = 0, localSum

I Initialise a on each image

localSum = SUM(a) !'Find localSum of a on each image

critical f
globalSum[1] = globalSum[1] + localSum '
end critical
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Other Synchronisation

* SYyNC memory

= Coarray data held in caches/registers made visible to all images
= requires some other synchronisation to be useful

= unlikely to be used in most coarray codes

e sync memory implied for sync all and sync 1mages

0o
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Other Synchronisation

e lock and unlock statements

= Control access to data defined or referenced by more than one
Image

= as opposed to critical which controls access to lines of
code

= USE 1so0_fortran_env module and define coarray of
type(lock_type) type(lock_type) :: glLock[*]

= e.g.tolock data on image 2

lock(gLock[2])
laccess data on image 2
unlock(gLock[2])
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Other Intrinsic functions

e Icobound(z)

= Returns lower cobounds of the coarray z

= Ilcobound(z,dim) returns lower cobounds for
codimension dim of z

e ucobound(z)
= Returns upper cobound of the coarray z

= Ilcobound(z,dim) returns upper cobound for
codimension dimof z

e real :: array(10)[4,0:*] on 16images
= Ilcobound(array) returns|[ 1, 0 ]
= ucobound(array) returns|[ 4, 3 ]
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More on Cosubscripts

e Integer :: a[*] on8images
= cosubscript aJ9] is not valid

e real :: b(10)[3,*] on8images
= ucobounds(b) returns[ 3, 3 ]
= cosubscript b[2,3] isvalid (corresponds to image 8)...

= _..but cosubscript b[3,3] isinvalid (image 9)

= Programmer needs to make sure that cosubscripts are valid

= this_1mage returns O for invalid cosubscripts
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Assumed Size Coarrays

* Codimensions can be remapped to corank greater than 1
= useful for determining optimal extents at runtime

program 2d
real, codimension[*] :: picture(100,100)
integer :: numimage, numimagex, numimagey

numimage = num_images()

call get best 2d decomposition(numimage,&
numimagex, numimagey)

I Assume this ensures numimage=numimagex*numimagey

call dothework(picture, numimagex, numimagey)

contains

subroutine dothework(array, m, n)
real, codimension[m,*] :: array(100,100)

end subroutine dothework
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® Each image has its own set of input/output units

® units are independent on each image

® Default input unit is preconnected on image 1 only
= read *,.. ,read(*,.)..

e Default output unit is available on all images
= print *,. ,write(*,..)..

® |t is expected that the implementation will merge
records from each image into one stream
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Program Termination

® STOP or END PROGRAM statements initiate normal
termination which includes a synchronisation step

® An image’s data is still available after it has initiated
normal termination

® Other images can test for this using STAT= specifier to
synchronisation calls or allocate/deallocate

= test for STAT _STOPPED IMAGE (defined in
ISO_FORTRAN_ENV module)

® The ERROR STOP statement initiates error
termination and it is expected all images will be
terminated.
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Coarray TR

® New coarray features may be described in a Technical Report
(TR)

® Work in progress but the areas of discussion are:
= image teams
= collective intrinsics for coarrays
= file operations by more than one image
= new atomics
= coarray pointers and non-symmetric allocation
= coscalars
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TR: TEAMSs of Images

® To define a set of images as a TEAM

call form team(team,[ (i,i=1,n,2) 1)

® To synchronise the team

sync team(team)

® To determine images that constitute a team

images=team_images(team)

c=esr |©0CC



TR: Collective intrinsic subroutines

® Collectives, with in/out arguments, invoked by same
statement on all images (or team of images)

® Routines
= CO _SUM and other reduction operations
= CO_MINVAL, CO_MAXVAL
= Possibly more general reduction

e Arguments include SOURCE, RESULT, TEAM

e Still discussion on need for implicit synchronisation and
argument types (for example non-coarray arguments)
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